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ABSTRACT 
This paper describes an implemented software prototype for the 
Distributed Collaboration and Interaction (DCI) system, which 
addresses the challenges of helping humans to act as an integrated 
part of a multi-agent system.  This area of research is unexplored 
to a large extent.  Human interaction with agents who act 
autonomously most of the time, such as a process control agent in 
a power plant, has received little attention compared to human 
interaction with agents who provide a direct service to humans, 
such as information retrieval.  This paper describes how liaison 
agents within the DCI system can support human interaction with 
agents that are not human-centric by design but must be 
supervised by or coordinated with humans.  Further, the DCI 
prototype supports notification and planning for humans from the 
perspective of an organization.  It treats humans in this 
organization as if they were agents with explicitly modeled roles 
and activities related to software agents in the same system.  
Planning for humans presents unique challenges because the 
models represented in traditional planners do not match well with 
human mental models.  The DCI prototype is applied in the 
domain of NASA advanced life support systems, which are 
controlled primarily by software agents in an autonomous fashion 
with occasional human intervention.  The DCI system provides a 
step toward future seamless integration of humans and software 
agents into a cohesive multi-agent system. 

1. INTRODUCTION 
As software agents become more capable and more prevalent, 
humans must be able to interact with a heterogeneous collection 
of humans and software agents.  Both humans and software 
agents can play diverse roles in a system, with varying degrees of 
autonomy, initiative, and authority across different tasks.  
Although many of today's software agents commonly interact 
with humans, these interactions are often in direct service to the 
human in a one-on-one manner, much like a human's interaction 
with a travel agent, for example.  However, software agents can 
also undertake long-term, autonomous operations that serve 
human purposes as well, though not through direct interaction 
with a human.   
Humans need to interact with autonomous agents over long-term 
operation for a variety of reasons including monitoring, 
modifying goals, maintaining or repairing underlying hardware or 
software, responding to anomalies, and taking advantage of 
opportunities.  However, research supporting human interaction 
with these types of agents has received relatively little attention.  

As more software agents are deployed for long-term autonomous 
operation, the research challenge of enabling agents and humans 
to work together as a complete system becomes more important.  
To meet this challenge, research must overcome issues such as 
limited visibility into the agent's processing, mismatches between 
a human's mental models and the agent's implementation models, 
inadequate adjustability of the agent's autonomy, lack of 
notification to the human about important events at appropriate 
levels of abstraction, and a basic lack of compatibility between a 
human's interface capabilities and the interfaces provided by a 
software agent.   
We have developed the Distributed Collaboration and Interaction 
(DCI) system to address these difficulties in human-agent 
interaction and to create an environment in which humans and 
software agents together can form an integrated multi-agent 
system.  The initial motivation for the DCI system arose from our 
experiences with deployed intelligent control agents for NASA 
advanced life support systems.  These intelligent control agents 
monitor and perform process control for regenerative life support 
systems, which recover usable water or air, for example, from the 
waste products created by biological systems over time.  Over 
months to years of continuous operation of these agents, we 
discovered many unaddressed needs for human interaction.  These 
lessons learned are detailed in [21].  Through the DCI prototype 
described in this paper, we have addressed and enhanced our 
understanding of these interaction needs and begun to formulate 
solutions. 
Further, we have recognized the need for and provided support for 
interactions of groups of humans and software agents that are 
coordinated at the level of the organization they support.  Based 
on our own experiences, the NASA organization (considering 
mission objectives and constraints) defines policies and protocols 
for fulfilling human roles within the organization as well as for 
the operation of software agents during the missions.  A similar 
requirement to support organizational needs could be seen in the 
management of power plant operations, for example, if automated 
control agents were deployed for process control with possible 
monitoring and intervention by human supervisors.  These types 
of organizations can be realized as heterogeneous human-agent 
multi-agent systems.  In these systems, organizational policies 
and objectives require humans to perform in various roles and to 
maintain a specified level of situation awareness with respect to 
the automated control agents and the underlying hardware they 
control.  In the course of their duties, humans must be able to 
interact with and influence the software control agents.  The DCI 



system supports these organizational requirements by providing 
an environment through which humans can act as system agents 
with roles and tasks managed by the organization along with 
software agents who perform other operations in the organization.  
This paper describes how the development of the DCI prototype 
addressed unique challenges to apply automated planning for 
organizational goals to human agents. 
The DCI approach uses intermediate liaison agents associated 
with each human to provide an interfacing layer between the 
human and the rest of a multi-agent system.  These liaison agents 
have the purpose of representing an individual human to the rest 
of the software in the system while supporting a human-centric 
and user-friendly interface for that human into the system.  We 
also use augmenting software associated with other existing 
software in the multi-agent system (for example, a centralized 
planner or a particular software agent or group of these agents) to 
handle the human-interfacing requirements related to that domain-
centric software.  Although the domain-centric software must 
internalize some basic human-interaction functionality such as 
adjustable autonomy [7], our approach avoids overburdening 
resource-limited software agents, whose processing may include 
time-critical tasks, with tasks that are not directly related to their 
primary organizational objectives.  The augmenting software is 
designed to integrate closely with the domain-specific software 
and thus off-load much of the human-centric processing.   
This paper provides an overview of the DCI system and a 
description of a software prototype that implements many of the 
desired behaviors of the DCI environment.  This prototype is 
applied to support NASA engineers working with intelligent 
control agents for advanced life support systems.  We provide an 
overview of this application and a description of how the DCI 
prototype supports human interaction with an intelligent control 
agent within the context of organizationally defined roles and 
interaction policies.  We next provide details about the 
implementation steps we took within the DCI environment to 
interface humans to a centralized planner that manages the 
humans' roles and activities.  We then discuss some of the related 
research that supports this work, and we conclude with a 
summary and a discussion of research issues. 

2. PROTOTYPE APPLICATION DOMAIN 
Since 1995, we have been developing intelligent control systems 
for advanced life support [20; 2].  These control systems have 
been realized by software agents using an architecture known as 
3T [1], and were designed to run autonomously for months at a 
time.  3T is a layered control architecture whose top tier is a 
hierarchical task net (HTN) planner, the plans of which are 
executed through a reactive middle tier that in turn manages the 
sensors and actuators of the hardware via a low-level control tier.   
One such life support system is the advanced Water Recovery 
System (WRS).  Developed at Johnson Space Center (JSC), the 
WRS is comprised of four hardware subsystems that remove the 
organic and inorganic materials from waste water (hand wash, 
shower, urine and respiration condensate) to produce potable 
water.  From January 2001 through April 2002, the 3T system 
controlled the WRS autonomously in a continuous 24/7 integrated 
test [2]. The hardware and control software for the WRS operated 
unattended in JSC's Water Processing Facility (WPF) while the 
human hardware and software engineers performed intermittent 

monitoring from remote locations (office, home, etc.) for 
anomalies in the system due to network, hardware, or power 
failures. 
Over this period of operation, the humans were responsible for 
monitoring and occasionally intervening in WRS operations while 
spending the majority of their time carrying out their daily tasks 
on unrelated projects.  Software support for this remote 
monitoring was minimal due to funding constraints, and remote 
interaction with the control system to correct problems was 
unavailable.  Several other interaction needs were also identified 
in areas such as notification and improved visibility into the 
control system [21].  To explore support for WRS controls 
management, an early version of the DCI system prototype was 
deployed with the WRS 3T system in April 2002, and we have 
continued to develop the prototype and apply it to this domain 
through a simulation of the WRS 3T system. 
Our DCI prototype supports a number of human agents, each with 
a set of daily activities to perform as mandated by the 
organization, much as NASA mission tasks would be mandated 
for crew members.  Additionally, three of the humans are 
responsible for handling anomalies that occur in the WRS.  One 
agent, the Prime, has first responsibility for responding to 
problems in the WRS; a second agent, the Backup, has the job of 
taking over if the Prime is unable to respond to the problem.  The 
Coordinator oversees the work of the other two agents and also 
serves as the secondary Backup.  The following section provides 
an overview of the DCI system and describes how the current 
DCI prototype supports these human agents in interacting with the 
WRS control agent. 

3. DCI OVERVIEW AND PROTOTYPE 
The philosophy behind the DCI system involves creating an 
environment that supports human collaboration and interaction 
with software agents and also giving humans appropriate tools 
and interfaces to participate effectively in these interactions.  In 
short, we are striving to provide a virtual environment in which 
the human can interact naturally with software agents.  The DCI 
system is made up of three types of software (1) augmenting 
software that integrates with domain-centric software or software 
agents to provide a human-friendly virtual multi-agent 
environment, (2) liaison agents that serve a human’s interaction 
needs both to and from this virtual environment, and (3) user-
interface software that is managed by the liaison agents to provide 
a comfortable, effective, user-friendly interface for the human to 
the multi-agent system. 
Figure 1 depicts representative elements of a DCI system.  The 
entities with black backgrounds (the human, the WRS system and 
its control agent, and the multi-agent planner) participate in, but 
are not part of, the DCI environment.  The following paragraphs 
describe the function of each DCI entity in Figure 1 as well as 
how the entity is instantiated and used in the DCI prototype.  
The Conversion Assistant for Planning (CAP) and the Event 
Detection Assistant (EDA) are representative pieces of 
augmenting software in the DCI system.  The CAP is software 
that is tightly coupled and shares models with the automated 
planner, thereby augmenting the planner’s ability to interface with 
human agents. Our planner is a hierarchical task net (HTN) 
planner known as AP that is capable of automatically monitoring 
and updating its plans [8]. AP evenly distributes the workload 



among agents based on their capabilities and reasons about metric 
time for scheduling. The CAP’s functionality is discussed in 
detail in Section 4.  The EDA monitors data produced by the 
WRS control system and searches for patterns in this data that are 
of interest to the humans for such activities as anomaly analysis 
and performance assessment. The EDA is implemented using the 
Complex Event Recognition Architecture (CERA), an event 
detection system developed by I/Net 
(www.inetmi.com/whatsnew/pressrel/03-01-01.htm).  As 
specified patterns are detected in the control data, the EDA 
generates and broadcasts its own events about these data patterns, 
which are represented at levels of abstraction suited to human 
understanding.   

Liaison agents are central to the DCI system because they 
represent the human to other software agents and vice versa.  The 
liaison agents in DCI are called Attentive Remote Interaction and 
Execution Liaison (ARIEL) agents, in deference to Shakespeare’s 
Tempest character.  Although the ARIEL agents in the current 
DCI prototype are not yet implemented as complete agents with 
explicit goals and desires, they do hold explicit beliefs about the 
state of their human user, and they exhibit many of the basic 
processing behaviors desired for a complete ARIEL agent 
implementation in the future.  The beliefs held by an ARIEL 
agent are managed by its State Management Service (SMS), which 
takes input from many of ARIEL’s other services and creates a 
coherent state model of the user, including current activity, 
location, role, schedule, and health.  The SMS also interacts with 
its user by querying for state input (such as schedule 
acknowledgements), when appropriate.  Other services 
represented in ARIEL’s design include: 

• Notification Service (NS): The NS combines information about 
the user’s current state and roles, organizational policies about 
information distribution and situation-awareness requirements, 
and the user’s own information preferences to determine if an 
incoming notice or event is of interest and, if so, how to inform 
the user.  How to inform the user of a notice is expressed as an 
assessment of the “latency” and “focus of attention” [19] to be 
used when presenting the information, and a selection of 
interface modalities (e.g., computer display, pager, email) to 

use for this presentation.  The NS implementation and the 
representation of specifications an organization or individual 
may use to filter or present notices are described in detail in 
[19].  In the DCI prototype, the NS that is associated with the 
human who has the Prime role ensures that he is notified of 
important WRS anomaly events with high saliency.  However 
the Backup is allowed to continue her current task without 
distraction because her NS simply logs anomaly notices.  
Notices processed by the DCI prototype include (1) events 
generated by the Event Detection Assistant about the WRS 
control system, (2) notices from the ARIEL agent to its user 
about ARIEL requests such as the need for schedule 
acknowledgement, and (3) events generated by the ARIEL 
agents of other humans in the user’s group about various 
human state changes such as a location change.   

• Task Status Service (TSS): The TSS provides activity tracking 
and plan management capabilities.  In the DCI prototype, the 
TSS (1) monitors the user for acknowledgement of time-critical 
assigned activities such as WRS repair tasks, (2) uses 
information generated by the augmented planner to inform its 
user when a planned task becomes ready to execute, (3) 
monitors its user for evidence that critical tasks have been 
initiated using location information or direct user queries, and 
(4) provides a source of feedback to the augmented planner 
about human progress or lack of progress toward achieving a 
plan.  The TSS helps the ARIEL agent close the loop between 
the planner and a human, which is especially important for 
time-critical repair tasks in the DCI prototype application. The 
TSS implementation is discussed further in Section 4.   

• Location Service (LS): The LS tracks human location 
information including physical location and cyber location, i.e., 
whether or not the user is online and which display platforms 
she is currently using.  In addition, the location service uses the 
combination of physical and cyber location information to infer 
an overall assessment of the user’s presence, for example, 
“Available-Remote-Online.”  This location information is 
provided through the State Management Service to the other 
services and is used (1) by the Task Status Service in tracking 
the initiation or completion status of activities, (2) by the 
Notification Service in determining which notification modality 
is currently most appropriate, and (3) by the User Interface 
Service in customizing the presentation of information.  In the 
DCI prototype, a user’s physical location is tracked through 
log-in and log-out events within the DCI environment (via 
static IP mapping).  We are also in the process of incorporating 
the use of GPS devices to track physical location.  Similar 
versions of location tracking have been used successfully by 
other systems [6; 17].   

• User Interface Service (UIS): The UIS manages all direct 
interaction with the user.  It invokes different modalities, such 
as display, pager, or email, to present information in the 
manner most appropriate to the user’s current state and task.  It 
also manages the overall state of information presented by any 
persistent user interface (e.g., a graphical user interface, GUI, 
versus a transient pager message) such that multiple locally-
managed views of this information will remain consistent (e.g., 
multiple GUIs open on different display platforms).  In the DCI 
prototype, the UIS is capable of sending emails, posting to and 
accepting information from the DCI user interface GUIs 
discussed later in this section, and accessing a simulated pager 

planner 
(AP) WRS Life 

Support 
System

WRS control 
agent

WRS Life 
Support 
System

WRS control 
agent

Human

Conversion Assistant for Planning
(CAP)

GUI Situation  Viewer

Event 
Detection 
Assistant

(EDA)

Command/ 
Authorize 

(CAS)

Interrupt 
Handle

(IHS)

Task
Status
(TSS)

Interactive
Procedure 

(IPS)

Interactive
Event 
(IES)

Notification
(NS)

Location
(LS)

User
Interface

(UIS)

State
Management 

(SMS)

ARIEL

 
Figure 1. Representative elements of DCI architecture. 



server.  Multiple interface modalities for posting information to 
humans have been managed successfully in related research 
projects such as [17].  In the future, we hope to incorporate 
increasingly natural and more sophisticated human-agent 
interaction mechanisms into this service.   

The remaining ARIEL services are not yet implemented in the 
DCI prototype: 

• Command and Authorization Service (CAS): The CAS supports 
the user in remotely interacting with mostly autonomous agents 
who are tied to physical systems that the user also influences, 
such as the underlying WRS life support system hardware.  
“Commanding” refers to a user’s action of issuing directives to 
the underlying physical system (e.g., turning on a pump).  
Using DCI, this commanding should be mediated through the 
autonomous agent controlling the system, when possible.  The 
CAS (1) determines if the user is authorized to command (i.e., 
access control), (2) ensures command lock-outs or resolves 
command conflicts when more than one user is interacting with 
the system or the control agent (e.g., the WRS control agent), 
and (3) reconfiguring both the automation and user interface in 
preparation for commanding (i.e., adjusting the autonomy of 
the WRS control agent).   

• Interruption Handling Service (IHS): The IHS coordinates the 
actions of other services (the Notification Service, for example) 
to minimize the impact of interruptions on the user’s primary 
tasks.  Support for interruption handling includes (1) 
determining when the user should be interrupted and how 
intrusive the interruption should be, (2) mapping the human 
concepts of task status at interruption (delayed, deferred, 
suspended) to the changes needed to update the plan by an 
automated planner (e.g., goal changes, task completion status 
changes), and (3) assisting the user in managing multiple, 
concurrent threads of activity. 

• Interactive Procedure Service (IPS): The IPS assists the user in 
temporarily modifying standard operating procedures executed 
by the automated control software. 

• Interactive Event Service (IES): The IES assists the user in 
interactively defining temporary, new operational events and 
controlling automated monitoring for these events. 

The user interface software in the DCI system is critical for 
providing humans with effective tools to participate in the overall 
multi-agent system.  The prototype’s user interface software 
currently consists of GUIs that give a user access to (1) her 
ARIEL agent’s current model of her user state, (2) her schedule as 
planned and updated by the augmented planner and as annotated 
with status information by the Task Status Service, (3) the archive 
of notices that her Notification Service has determined are 
relevant, and (4) a high-level overview toolbar as shown in Figure 
2.  Additional GUIs that are in the design stages for the DCI 
prototype include (1) a view of the state of the user’s group, and 
(2) a dialogue interface that allows the user to interact 
conversationally with other human and software agents, including 
the ARIEL agents of other group members.   
Figure 2 shows the primary DCI user interface toolbar.  This 
toolbar is designed to be always visible on a small section of the 
user’s display and is used for multiple purposes.  First, it provides 
buttons that allow a user to access other DCI GUIs.  Second, it 
provides the user with “at a glance” information about important 

changes that have recently occurred, to which the ARIEL agent is 
drawing the user’s attention.  In Figure 2, the schedule icon has 
been highlighted with a red exclamation point indicating a very 
important scheduling event, in this case the insertion of a time-
critical repair task to the user’s schedule as the next task the user 
needs to perform.  (This icon actually flashes on and off and 
makes a sound in the prototype to better draw the user’s 
attention.)  The notice icon in Figure 2 also draws the user’s 
attention to a lesser extent by indicating that two highly important 
or urgent notices are available.  The toolbar shown in Figure 2 can 
be used to quickly orient the user to the current operational 
situation when she logs in to the DCI system and to alert her to 
what has transpired while she was offline.  It also provides 
situation awareness as she works at other tasks while logged in to 
the system.  The toolbar implementation uses saliency annotations 
from the Notification Service and the Task Status Service to 
determine whether to concentrate the user’s focus of attention 
(with flashing icons and sounds) or to rely on the user’s peripheral 
awareness to detect changes (with simple icon changes as in [5]). 
The Situation Viewer provides one further element needed in an 
effective user interface for humans interacting with intelligent 
control agents.  In the DCI prototype, the Situation Viewer 
summarizes complex situations recognized by the Event 
Detection Assistant and provides needed visibility into the 
operation of the WRS control system.  Previous work in viewing 
situations focused on providing organized logs [24].  This work 
integrates discrete and analog events at multiple levels of 
abstraction provided as part of the situation data structure. 
The DCI prototype is implemented as a distributed system of 
approximately 30 processes using both CORBA and IPC [22] for 
distributed communications.  The user interface software and 
most of the ARIEL services are implemented in Java and have 
been executed at various times on Linux, Windows, and 
Macintosh systems.  The CAP augmentation for the planner, each 
Task Status Service, and the Event Detection Assistant using 
CERA are implemented in Lisp and execute on Linux systems.   
This overview of the DCI prototype shows how the DCI system 
supports human interaction with the WRS intelligent control 
system.  Although we limit our in-depth discussion in the 
following section to applying automated planning for humans, 
similar design and implementation challenges arose for each piece 
of the prototype. 

4. PLANNING FOR HUMAN AGENTS 
The DCI prototype explores applying an automated planner to 
plan for humans from the perspective of the NASA organization, 
for both daily tasks as well as for unexpected tasks due to 
anomalies that arise from the WRS operations.  This section 
describes (1) the overall challenges we have observed for 
applying automated planning to human agents, (2) the approach 

 
Figure 2.  DCI toolbar.  Icons access additional GUIs (user 
state, schedule, notices, group, conversation, and logout). 



taken in the DCI prototype to explore possible solutions to these 
challenges, and (3) the resulting support provided by the DCI 
prototype for the WRS controls domain to which we have applied 
the prototype.  Our initial exploration of these challenges in the 
DCI prototype provides a step toward future, more general 
solutions across application domains. 

Applying an automated planner to human agents poses interesting 
research issues because autonomous planners do not integrate 
with humans in the same manner as they do with other software 
agents, such as layered control architectures like 3T [1].  These 
issues arise from the different ways in which automated agents 
and humans treat the plan.  An agent like 3T will perform all tasks 
in the plan it receives in a pre-specified manner.  On the other-
hand, a human agent interprets a plan generated for him or her at 
a higher level of abstraction.  Even if he or she intends to follow 
the plan there exists less inherent predictability about how and 
when the tasks will be accomplished.  In addition, humans and 
software agents interact with planners differently.  Software 
agents can be very responsive, even for low-level operations.  For 
example, the WRS control agent will acknowledge every directive 
and execute plan steps as soon as possible.  In contrast, humans 
are less responsive and would find frequent interaction with the 
planner burdensome.  For example, humans may fail to 
acknowledge tasks before starting to execute them or fail to 
provide evidence that tasks have been completed.  Further, 
software agents can easily understand a planner’s representation 
of a plan through common semantics and data structures.  
However, a human, concerned primarily with what she must do 
and when, needs a different representation of the generated plan.  
For example, compare the view of a plan generated by AP in 

Figure 3, to the personalized daily schedule view of a similar plan 
provided through the DCI prototype for a given user in Figure 4. 

4.1 System Design 
The DCI system accommodates the differences between planning 
for software agents and planning for human agents by adding 
software to mediate between the human and the automated 
planner perspectives.  By encapsulating the capabilities 
supporting each perspective in its own process, we handle 
separately (1) integration with the planner perspective and (2) 
integration with the human perspective.  The interaction among 
DCI components providing this mediation for planning is shown 
in Figure 5.  Note that multiple humans would correspond to 
multiple ARIEL agents in this figure, all of whom interact with a 
single planner and its associated augmentation software.   

First, DCI handles integration with the planner perspective 
through the Conversion Assistant for Planning (CAP).  The CAP 
conditions plans generated by the planner for use by humans and 
their ARIEL agents, and it converts information coming from 
humans and their ARIEL agents to the planner’s perspective.  
Beyond these interpretation duties, the CAP is responsible for 
monitoring the execution of the group plan and to initiate 
updating the plan (e.g., prompting the planner to replan) when the 
domain situation changes or when agents become unavailable.   

Second, DCI handles integration with the human perspective 
through the ARIEL agent and corresponding user interfaces.  
ARIEL’s Task Status Service (TSS) is responsible to track human 
activities and to model when new activities are ready to execute 
and when ongoing activities are completed or overcome by 
events.  The State Management Service (SMS) creates a user-
centric model of the plan provided by CAP and annotates this 
model with status information from TSS.  The User Interface 
Service (UIS) uses the SMS model of the plan to generate a 

 
Figure 3. A typical group plan generated for four agents by the automated planner AP [8].  The hierarchy is read from left (most 

abstract) to right (plan leaves).  Highlighted tasks are ready to be executed. 

 
Figure 4.  DCI personalized schedule view.  Plans from the 
automated planner appear to the user in a natural form.  
Tool tips over the activity names show the status of a given 
activity currently modeled by the user’s ARIEL agent. 
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schedule model that is the basis for the schedule view seen by the 
user.  The ARIEL agent serves both the human, by providing a 
useable schedule interface (as in Figure 4), and the planner, by 
providing feedback about task completion and acknowledgment, 
which humans do not typically provide in a manner that is easily 
used for computation. 

4.2 Prototype Application 
The remainder of this section describes how we used this 
approach to support centralized planning for human agents in the 
DCI prototype applied to the WRS domain.  The planner controls 
task assignment, but does not dictate the low-level details of how 
the humans carry out their tasks.  Note that this type of 
centralized control for human activities is needed to achieve the 
organizational goals of humans such as NASA crew members on 
a mission, during which their time serves as a critical resource 
and their activities are highly regimented.  The following typical 
WRS scenario is provided for context:   

Initially, the planner generates a plan of daily tasks for the human 
agents such as the plan shown in Figure 3.  Once the initial plan is 
in effect, the CAP monitors the status of the WRS for anomalies 
that require human intervention.  When the CAP receives 
evidence of such an anomaly, it invokes the planner to generate a 
new group plan that encompasses a repair task for the anomaly, 
using the agent roles and responsibilities previously described.  
The new plan usually means a schedule alteration for the human 
who is on-call for the WRS (the Prime).  The CAP and the 
Prime’s ARIEL agent work together to inform the Prime that her 
current task must be interrupted and a new time-critical repair 
task must be performed.  The Prime’s ARIEL agent monitors the 
user’s display interface and the user’s location for evidence that 
she has accepted and initiated the new task and provides feedback 
to the CAP about the status of this activity.  If the Prime is not 
able to acknowledge or initiate the repair task within an 
appropriate time, the CAP interprets the resulting status events 
generated by her ARIEL agent as a temporary unavailability of 
this human agent for time-critical tasks, and initiates replanning 
with this information.  AP will reassign the task to the Backup 
agent, and the CAP will use the resulting plan and knowledge of 
the state of execution of the other daily tasks to reassign the 
remaining daily tasks to the Prime agent.  Although this scenario 
seems straightforward, each DCI component shown in Figure 5 
performs critical processing to mediate this interaction.   

In the DCI prototype, the CAP (1) recognizes when situations 
occur requiring an update of the group plan including both the 
initial need for a repair task and any agent availability problems 
that may occur, (2) recasts planning information provided by the 
planner for the user, and (3) maintains continuity of activities 
across plan updates to support a human’s perception of activities.  
For example, although the concept of “interruption” is a natural 
way for humans to mentally model task status, AP, like most AI 
planners, does not model the notion of a task placed in abeyance 
until another more critical task is executed, such as the WRS 
repair task.  In AP the successful execution of a task should bring 
about a set of desired effects in AP’s perceived situation. These 
include effects from sensed data, like a communication from 3T 
that a problem has been corrected, as well as effects added by AP 
when a task is completed such as the purpose clause (a first order 
proposition) of a given plan operator. If these effects are not in the 
perceived situation when a new plan is generated, and the task 

purpose is still a desired goal for the user, the task will again 
appear in the new plan.  The CAP needs to properly interpret this 
reappearance for the user to avoid redundant updates, and to 
correctly indicate whether a task has indeed been interrupted.  By 
comparing the task purpose with that of previously assigned tasks, 
checking for the existence of the effects of the task in the 
perceived situation, and keeping track of the initiation status of 
events, the CAP can determine whether a given task has been 
interrupted. 

The overall functions of the TSS with respect to activity tracking 
and plan management are described in Section 3.  At a finer level 
of detail, the TSS (1) models and reasons about task criticality to 
determine whether to request user acknowledgement and when to 
focus the user’s attention on a particular activity and (2) assesses 
changes in activity status using both direct activity feedback from 
the user and indirect evidence.  With respect to the first point, the 
TSS distinguishes time-critical tasks such as WRS repair tasks 
from other, non-critical tasks such as routine daily activities.  The 
TSS requires more responsiveness and interaction from the user 
for time critical tasks.   

To assess activity status, the TSS may make assumptions about 
the status of non-critical tasks, but requires evidence to infer 
status changes for time-critical WRS repair tasks.  When a time-
critical task is assigned to a user, his TSS begins watching for an 
acknowledgement that he has accepted the task.  As the current 
time approaches the timeout limit for acknowledgement of the 
task, the TSS attaches an increased saliency to the task, which 
causes the User Interface Service to attempt to focus his attention 
on the request for acknowledgement.  If he does acknowledge the 
assignment of the time-critical task within the allotted time 
period, the TSS begins monitoring for indirect evidence that the 
user has initiated the task, such as the arrival of the agent at the 
location where the activity should take place, e.g., the Water 
Processing Facility.  The TSS also monitors for direct evidence 
that the WRS repair task has been completed, e.g., in the case of 
lost communications within the WRS system, the evidence comes 
in the form of a message from the control software agent that the 
communications have been restored.  The TSS provides all status 
updates to the CAP, allowing the CAP to effectively manage 
coordination of the human agents with respect to the WRS and 
find a new agent to perform a given repair task, if necessary.   

For non-critical daily tasks, the current TSS implementation in the 
DCI prototype minimizes user distraction by making assumptions 
about task initiation and completion.  The TSS assumes these 
tasks are initiated and completed at the times they are scheduled, 
as long as the human has previously acknowledged her 
acceptance of the most recent overall daily schedule.  Future TSS 
implementations will involve more instrumentation of the user for 
these routine tasks and will allow after-action task-status 
reconciliation with the user to confirm, for example, whether 
tasks inferred complete were actually performed. 

The discussion in this section clearly shows that the interleaving 
of time-critical tasks with daily human activities through 
automated planning requires special considerations, and the CAP 
and the ARIEL agents must work together to keep the human and 
planner up to date with respect to scheduled and executing tasks.  
Through this coordinated, intelligent interplay between the CAP 
and the ARIEL agents, the DCI architecture compliments and 
extends the capabilities of the automated planning algorithms so 



that they can better serve the human users.  As shown in the DCI 
overview in Section 3, these capabilities are an important piece of 
the overall objective to support human interaction within a multi-
agent system. 

5. RELATED WORK 
To integrate humans into a multi-agent system alongside software 
agents, we have leveraged existing research across a wide range 
of areas including, human-agent interaction [15; 12], teaming and 
human-agent teams [6; 14; 4], user interfaces and underlying 
applications [17; 5], characteristics of autonomous agents 
including adjustable autonomy [7; 16], and planning tools and 
mixed-initiative planning [9; 13; 11].  This section highlights 
some of this research and how it applies to DCI. 
A very successful and innovative implementation of interaction 
between humans and software agents has been demonstrated in 
the Electric Elves system to support human organizations [6].  
This system incorporates multiple humans and multiple software 
agents; however, each human interacts primarily with the 
capabilities of his or her own “proxy” (or with non-autonomous 
software accessed through the proxy).  The Electric Elves 
architecture does not fully address our requirements for support 
agents to act as mediators and/or enablers for humans to interact 
with yet a third class of agents: autonomous control systems. 
The interface agents in the MokSAF environment support human 
interaction with software agents in human/agent teams in the 
domain of decision-support for military route planning [14].  
These interface agents assist humans in tasking other agents 
(route-planning agents), present situation information to the 
human team members, and help humans communicate and 
coordinate with other humans.  All of these capabilities are 
desirable for ARIEL agents in DCI, and the MokSAF work 
identifies many important issues with respect to enabling an 
interface agent to act on a user’s behalf.  However, the MokSAF 
environment does not address DCI’s need to interact with mostly 
autonomous agents because the route-planning agents are still 
human-centric in that their primary purpose is to assist a human in 
generating a route, if tasked by the human to do so. 
Bradshaw et al have investigated human-agent teamwork in depth 
[4].  For example, they are modeling human-robot collaboration, 
using Brahms to simulate human work practice [4].  They 
continue to develop policies to support agent interaction and 
teamwork, based on KAoS agent services [3].  This work 
represents the type of basic theories and types of services to 
enforce interaction policies that are needed to support further DCI 
implementation of increasingly complex human-agent interaction. 
Few research efforts in AI planning are focused on interpreting 
the output of an automated planner for a human agent to whom 
the plan applies.  There have been many efforts to make it easier 
for a human planner to use automated planning tools [13; 11] and 
mixed-initiative planning [9].  Also, several planners, like AP [8], 
have been designed to manage the activities of large groups of 
humans such as military units, but not individuals [25; 23].  The 
output of NASA's automated aids for planning the daily activities 
of shuttle and station crew is either interpreted by another human 
(e.g., the CapCom) or transformed into paper schedules managed 
by humans [10].  In contrast, the DCI system needs a planner that 
not only generates and updates plans for individual humans, but 

also interprets the plans so that the humans have a ready 
understanding of their current and future tasks [18]. 

6. CONCLUSIONS 
This paper describes the Distributed Collaboration and Interaction 
(DCI) system design and an implemented prototype of that 
design.   DCI aids human interaction with complex, mostly 
autonomous, domain-centric software agents in the context of an 
integrated multi-agent system supporting organizational goals and 
policies.  In addition to an overview of DCI, we provide a detailed 
description of the challenges we faced to apply multi-agent 
planning to human agents.  Through the DCI environment, 
humans can become part of the multi-agent world and act 
naturally within it.  As autonomous software agents become more 
common, both in environments that highly regiment the activity 
of human agents such as NASA mission support and in every-day 
environments such as smart houses, supporting a human’s ability 
to interact with these software agents becomes increasingly 
important.   
In the development of the DCI prototype, we have addressed 
many interaction challenges including (1) mapping models and 
data designed for use by software (and thus containing artifacts of 
implementation choices) to human-usable information, (2) 
balancing an organization’s need for human awareness of 
software agent activities with the need to avoid both information 
and cognitive overload, and (3) providing necessary feedback 
about human state to automated software that is difficult or 
annoying for humans to provide manually.  These interactions are 
directed both toward the human and toward other software agents.  
Our next step is to provide fully interactive multi-step interactions 
between humans and autonomous control agents.   
We have seen the need for integration of humans with mostly 
autonomous software agents through our experiences with 
autonomous control agents for NASA life support systems.  
Supporting this type of multi-agent system, including planning for 
humans as agents, is a relatively novel endeavor.  Through our 
work to prototype the DCI system, we hope to discover a set of 
design principles for building systems like this in the future.  Thus 
far, we have seen that: 

• Neither thin “wrappers” around software agents nor 
sophisticated user interfaces are enough to support human 
interaction with complex software agents.  Our experience 
indicates that active and vigilant processing, based on 
knowledge of the complexity of the software agents as well as 
knowledge of the needs of the human, is required to allow the 
human to manifest herself effectively into a multi-agent world.  
The concept of a liaison agent fits this role well. 

• For effective interaction, complex software agents must 
implement some human-centric functionality such as the 
capability for adjustable autonomy allowing humans to 
supervise and adjust the agents’ behavior if necessary.  
However, much of the human-centric processing can be 
handled by tightly coupled external software to avoid 
overloading the software agents and degrading their 
performance on their primary task. 

Based on our experiences, human interaction with complex 
software agents (who themselves interact with one another and 
who have their own, independent goals) has received relatively 
little previous attention.  We have designed the DCI system to 



address these issues and applied a DCI prototype in a NASA-
oriented domain.  This DCI prototype represents an important 
step toward integrating humans with multi-agent systems in the 
future. 
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